TAK1 is a central mediator of NOD2 signaling in epidermal cells.

نویسندگان

  • Jae-Young Kim
  • Emily Omori
  • Kunihiro Matsumoto
  • Gabriel Núñez
  • Jun Ninomiya-Tsuji
چکیده

Muramyl dipeptide (MDP) is a peptidoglycan moiety derived from commensal and pathogenic bacteria, and a ligand of its intracellular sensor NOD2. Mutations in NOD2 are highly associated with Crohn disease, which is characterized by dysregulated inflammation in the intestine. However, the mechanism linking abnormality of NOD2 signaling and inflammation has yet to be elucidated. Here we show that transforming growth factor beta-activated kinase 1 (TAK1) is an essential intermediate of NOD2 signaling. We found that TAK1 deletion completely abolished MDP-NOD2 signaling, activation of NF-kappaB and MAPKs, and subsequent induction of cytokines/chemokines in keratinocytes. NOD2 and its downstream effector RICK associated with and activated TAK1. TAK1 deficiency also abolished MDP-induced NOD2 expression. Because mice with epidermis-specific deletion of TAK1 develop severe inflammatory conditions, we propose that TAK1 and NOD2 signaling are important for maintaining normal homeostasis of the skin, and its ablation may impair the skin barrier function leading to inflammation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leukotriene B4 Enhances NOD2-Dependent Innate Response against Influenza Virus Infection

Leukotriene B4 (LTB4), a central mediator of inflammation, is well known for its chemoattractant properties on effectors cells of the immune system. LTB4 also has the ability to control microbial infection by improving host innate defenses through the release of antimicrobial peptides and modulation of intracellular Toll-like receptors (TLRs) expression in response to agonist challenge. In this...

متن کامل

TGF-β-Activated Kinase 1 (TAK1) Signaling Regulates TGF-β-Induced WNT-5A Expression in Airway Smooth Muscle Cells via Sp1 and β-Catenin

WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated t...

متن کامل

TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration.

TGF-β activated kinase 1 (TAK1) is a mediator of various cytokine signaling pathways. Germline deficiency of Tak1 causes multiple abnormalities, including dilated blood vessels at midgestation. However, the mechanisms by which TAK1 regulates vessel formation have not been elucidated. TAK1 binding proteins 1 and 2 (TAB1 and TAB2) are activators of TAK1, but their roles in embryonic TAK1 signalin...

متن کامل

Activation of TGF‐β activated kinase 1 promotes colon mucosal pathogenesis in inflammatory bowel disease

The etiology and mechanisms for inflammatory bowel disease (IBD) are incompletely known. Determination of new, clinically important mechanisms for intestinal inflammation is imperative for developing effective therapies to treat IBD We sought to define a widespread mechanism for colon mucosal inflammation via the activation of TGF-β activated Kinase 1 (TAK1), a central regulator of cellular inf...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 1  شماره 

صفحات  -

تاریخ انتشار 2008